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Abstract-The onset of natural convection in a fluid layer completely confined in a vertical annulus heated 
from below is investigated on the basis of linear stability theory. The critical Rayleigh numbers and the 
preferred cell patterns are determined as functions of the mean radius and the gap width for a given layer 

depth. The results are in good agreement with the experimental observations of Stork and Miiller. 

1. INTRODUCTION 

MUCH ATTENTION has been paid to the onset of natural 
convection in a completely confined fluid heated from 
below to investigate the effects of the bounding walls. 

Some investigators [ 1,2] have obtained analytic solu- 
tions through separation of variables by allowing slip 
on either lateral walls or the top and bottom surfaces. 
The problem with the no-slip condition on all the 
boundaries has been considered by many other inves- 
tigators 13-81. The onset of convection in a rectangular 
box of fluid heated from below has been considered 
by Davis [3] and by Catton [4,5] ; it is predicted that, 
at the onset, finite rolls (cells with two non-zero vel- 
ocity components dependent on all three spatial vari- 
ables) with axes parallel to the shorter side of the box 
appear. The onset of convection in a cylindrical fluid 
layer was investigated by Charlson and Sani [6,7] and, 
more recently, by Buell and Catton [8]. Stork and 
Miiller experimentally studied the onset of convection 
in rectangular boxes [9], cylinders and annuli [IO]. 
Ozoe et al. [ 1 l] have also treated the convection prob- 
lem, both experimentally and computationally, for the 
vertical annulus of a fluid at Rayleigh numbers far 
above critical. They assumed that the roll possesses a 
nearly square cross-section at the mean radius within 
the gap, which is valid for moderately small values of 
gap width to depth ratio (see Section 4). 

This study is concerned with the onset of convection 
in an annulus of fluid bounded above and below by 
perfectly conducting plane surfaces, and laterally by 
two concentric vertical cylinders either perfectly con- 
ducting or perfectly insulating. All the bounding sur- 
faces are rigid. The equations describing the dynamics 
of infinitesimal disturbances into an initially quiescent 
fluid layer heated from below are approximately 
solved by using the Galerkin method. Special atten- 
tion is paid to determining the preferred cell patterns 
for various combinations of the mean radius and gap 
size. 

2. FORMULATION OF THE PROBLEM 

Initially a quiescent quasi-incompressible Bous- 
sinesq fluid fills an annular region as shown in Fig. 
1. The top and bottom surfaces are assumed to be 
perfectly conducting and maintained at constant tem- 
peratures T, and To (To > T,), respectively. The lat- 
eral walls are either perfectly conducting or perfectly 
insulating. In the initial state, a linear temperature 
profile is established in the fluid in the vertical direc- 
tion. Since, in this particular problem, instability sets 
in via a time-independent marginal state [6], terms 
with time derivative can be dropped in the linearized 
equations governing small disturbances. In cylindrical 
coordinates, the linear non-dimensional equations 
governing infinitesimal disturbances are 

;;(ru,)+;g+$o (1) 

(2) 

v20+uz = 0 (3) 

where the following nondimensionalization is used : 

FIG. 1. Schematic of the physical system. 
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NOMENCLATURE 

A 0 coefficients in axisymmetric velocity field T,, T, temperatures at the bottom and top 
representation surfaces 

a dimensionless parameter determined by u dimensionless velocity field, (u,, u+, u,) 
the ratio of the gap width to the mean X transformed radial coordinate, 
radius of the annulus, s/2r, r = r,(l -tax) 

B Cm,n,k m,n,k 1 coefficients in asymmetric 2 dimensionless vertical coordinate. 
velocity field representation 

G m,n.k coefficients in temperature field Greek symbols 
representation 

; 

coefficients of thermal expansion 
e,, e,, eZ unit vectors in Y-, (p-, z-directions, adverse temperature gradient of the 

respectively initial state in the vertical direction, 

9 acceleration of gravity (T, - T,)/H 
KF number of vertical trial functions 0 dimensionless temperature field 
H height of the annulus K thermal diffusivity 
m azimuthal mode number /,k eigenvalue in beam function 
NF number of radial trial functions v kinematic viscosity 

P dimensionless pressure field PO mean density 
Pr Prandtl number, V/K 4 azimuthal coordinate. 
Ra Rayleigh number, c$gH4/rcv 

Ra, critical Rayleigh number Subscript 
r dimensionless radial coordinate * dimensional quantity. 

r,, r, dimensionless radii of the inner and outer 
cylinders scaled by H, respectively Other symbol 

r, dimensionless mean radius, (ri + r,) /2 V2 Laplacian, a*@?+ (l/r) (ajar) 
s dimensionless gap width, r, - r, + (1 /r”) (a*jap) + a*p2. 

3. METHOD OF SOLUTION 

The Galerkin method is used to solve the eigenvalue 

For convenience, we introduce a new radial coor- 
dinate x such that the inner cylinder (r = ri) cor- 
responds to x = - 1 and the outer (r = rO) to .Y = I 

The solutions of equations (l)-(4) are sought for 
the following boundary conditions : 

u=O on x=+1(-:<z<:) 

andonz= +:(-1 <x< 1) (5) 

0=0 on z= -ti(-l<xXl) (6) 

0=0 on x= +l(-ids< h), 

for perfectly conducting lateral walls (7) 

aB 
ax=O on x= &1(-1<z<$), 

for perfectly insulating lateral walls. (8) 

Equations (l)-(4) with boundary conditions (5), 
(6) and (7) (or (5), (6) and (8)) constitute an eigen- 
value problem for the Rayleigh number Ra. The small- 
est eigenvalue is the desired critical Rayleigh number. 

problem stated in the previous section. First, the vel- 
ocity and the temperature fields are represented by a 
series of trial functions which satisfy the continuity 
equation (1) and boundary conditions (5)-(7) (or (5), 
(6) and (8)). Before proceeding, it is useful to point 
out that the odd solutions in z (corresponding to an 
even number of vertical rolls) are more stable than 
the even ones [3,8] and, therefore, it is sufficient to 
consider only the temperature and vertical trial func- 
tions even in z and the other two velocities odd. 

The approximating series for temperature is 

NF Kk‘ 

rl-lk=l 

II m,n.k = cos (mb)t,(x) cos [(2k- 1)7[2], 

m = 0, 1,2,. (9) 

where m is the mode number (e.g. m = 0 is the axisym- 
metric mode, m = 1 the first asymmetric mode, etc.). 
The radial trial function t,(x) is chosen to satisfy 
boundary condition (7) or (8). 

(A) Conducting side walls 

t,(x) = P,+,(x)-:[l-_(--1)“lP,(~) 

-$l+(-l)“]P,(X), n = I,2 )... (10) 
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(B) Insulating side walls where 

r,(x) = P&) 
&l(x) = 

P.+,(x)-1 (n = 1,3,5,.. .) 

P,+,(x)-x (n=2,4,6 ,...) 

and fn(x) is given by equation (13). 
Note that each of l&, V&t!,k and V!$,, satisfies the 

no-slip conditions on the bounding surfaces and that 
the velocity field given by equation (12) or equation 
(16) satisfies the continuity equation (1). We have 
chosen the radial trial functions as linear com- 
binations of Legendre polynomials P,(x), since a 
sufficient number of radial functions in this form will 
give exponentially accurate results [ 131. 

Substituting the expressions for u and 0 in equations 
(2) and (3) and requiring that the residuals be orthog- 
onal to all the trial functions, a system of linear 
algebraic equations for the coefficients An,k, B,,,n,k, 
C ,_+. and G,,,n,k is obtained. 

For brevity, only the description for the asymmetric 
mode will be given below. Equations (2) and (3), 
together with expressions (9) and (16), yield the fol- 
lowing 3N (N = NF*KF) linear equations : 

f”(X) =Pn+,(x)-(n+1~+2)[l+(-1)“lP,(x) 

- (~+1~~+2)[1-_(-~)“]P,(x), 

n=2,3,... (11) 

where P,,(x) denotes the Legendre polynomial of 
degree n. 

For the approximate representations of the velocity 
field, it is convenient to treat the axisymmetric mode 
and the asymmetric (three-dimensional) modes sep- 
arately. To approximate the axisymmetric velocity 
field, only one set of stream functions is needed, 
whereas two two-dimensional velocity fields are 
necessary to represent the asymmetric velocity fields 

[31. 

(1) Axisymmetric mode 

NF KF 

u = 1 1 &JJn,k ; Un,k = curl WdQ, 
“=Lk=l 

Ic/“,k(X? 4 = f” (4 G (4 (12) 

where the radial trial function f,(x) is chosen as 

L(x) = Pn+3(x)+ (n’11~+6)r1-(-l)“lP,(r) 

+ n%!gl[l+(-l)“]p,(x)_ (n+3;F+4) 

x [I-(-l)“]P,(x)- (n+2;r+5) 

x[l+(-l)“]P,(x), n= 1,2,... (13) 

and the vertical trial function C,(z) is the even beam 
function [ 121 

cash &z cos &z 
C,(z) =--- 

cash 1,./2 cos &/2 (14) 

where 1, satisfies 

tanhs +tan$ = 0. (15) 

(2) Asymmetric three-dimensional mode 

NF KF 

u = c c Pm,n,kVi!i,,k+ Cm,n,kVi$,kl ; m = 1,2,. . . 
n= I k= L 

(16) 

V!$,, = curl ($GJf?l,e,) 

Y% = curl (1cIk?,& 

VQ %,k = sin m4 sn (x) C, (z) 

+$‘.,, = sin rn4 f”(x) sin 2k7rz 

[ 

Pf,,l Pflzl RnPf*,I B 

w211 w221 0 c =o (17) 

]M,*l 0 Iii Df331 (7 

where [Mij] are N x N matrices and B, c and G are 
N-dimensional column matrices of B,,,n,k, Cm,n,k and 
G n,n,kr respectively 

]M, 11 = w’vi~,)~ Kz:~,,> 

[AZ121 = ((VV~~,)~V” 3 9 “94 ) 

[MI J = Wkn.kez)~ VA&> 

[M,,] = ((V’Vj&)* W’ 3 9 w4 ) 

[M2*] = ((VW$) * W’ mm ) 

Pf3J = ((Vi!,d~(Q . . e )> w.4 2 

[hi = w~~~,~,J - em,p,q> 

p=l ,..., NF, q=l,..., KF. (18) 

Here, the inner product of vector functions (f-g) is 
defined as 

112 2n I 

<f*&!) = 
s II 

(f - g)( 1 + ax) dx d4 dz. 
-I,2 0 --I 

(19) 

The terms involving pressure vanish due to the solen- 
oidal characteristics of the vector field and the bound- 
ary conditions. 

Elimination of c and G in equation (17) yields the 
following N linear equations : 

(~~~,1-~~,21~~221-‘~~2,1 

-Ra[M,,I[M,,l-‘[Ms,l)B = 0. (20) 
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The requirement for the system of N linear equa- 
tions (20) to have non-trivial solution is that the secu- 
lar determinant be zero 

-Ra[M,~I[M3,1-‘[M311) = 0. (21) 

Solving this eigenvalue equation for a fixed m, we 
can find the corresponding Rayleigh number and the 
resulting flow field. The repeated use of this procedure 
gives the Rayleigh number for each value of m 
(m = 1,2, . . .). The axisymmetric case (m = 0) can be 
solved in a similar manner. The critical Rayleigh num- 
ber and the corresponding preferred mode are deter- 
mined by comparing the axisymmetric and asym- 
metric results for a fixed geometrical configuration. 
The desired critical mode m is the one that gives the 
smallest Rayleigh number, i.e. critical Rayleigh num- 
ber Ra,. 

4. RESULTS AND DISCUSSION 

Calculations were carried out for gap width to depth 
ratio s < 3.5 and gap width to mean radius ratio 
2a < 1.9. A sufficient number of trial functions were 
used to give the critical Rayleigh numbers accurate to 
three significant figures. For all the cases calculated, 
24 terms (8 radial and 3 vertical trial functions) 
insured the desired accuracy. 

A two-dimensional channel can be regarded as the 
limit of an annulus as a -+ 0 with fixed s. When 
a = 0.01 instead of zero and s = 1, we obtained 
Ra, = 5020 associated with an axisymmetric ring roll 
and Ra, = 3140 associated with radial rolls (asym- 
metric rolls with axes directed radially), for con- 
ducting lateral walls. Davis [3] reported that for a long 
rectangular box of square cross-section (long side to 
height ratio = 10) with conducting bounding walls 
Ra, = 5035 in association with a single finite roll with 
axis parallel to the long side and Ra, 6 3500 associ- 
ated with finite rolls with axes parallel to the short 
side. The results obtained for the annulus and those 
for the rectangular box compare favorably, which 
may provide a check for the present calculations. 

In Fig. 2, theoretically predicted critical Rayleigh 
numbers and preferred modes at the onset of con- 
vection are depicted as functions of gap width s for 
fixed mean radius I, = 4, and are compared with those 
experimentally observed by Stork and Miiller [IO]. 
Both the critical Rayleigh number and the con- 
figurations show good agreement between the theor- 
etical calculations for insulated side walls and exper- 
imental observations. For small gap width (s & l), 
the thermal boundary condition on side walls strongly 
affects the critical states (critical Rayleigh number and 
cell modes). It is to be noted that, for conducting side 
walls, the number of radial rolls rapidly increases as 
gap width decreases, while it remains unchanged 
(number of cells = 26) for insulating walls. The vari- 
ation of roll numbers for small s observed by Stork 

‘%l-T+7-. 
FIG. 2. Critical Rayleigh number Ra, as a function of gap 
width s for Y, = 4. Curve (a), experimental results by Stork 
and Miiller [lo] with insulating side walls. Curves (b) and (c), 
theoretical results with insulating and conducting side walls, 
respectively. The numbers indicated near the critical curves 
denote the number of rolls and the arrows mark the ranges 
of different roll numbers. The letters ‘i’ and ‘0’ indicate the 
roll numbers experimentally observed at the inner and outer 

radii, respectively. 

and Mi.iller [lo] may be due to the fact that side walls 
in the experiment are not perfectly insulating. For 
large gap width (s 3 2), the critical states are almost 
independent of thermal conditions on lateral walls 
and the critical Rayleigh number decreases to 1708, 
as the gap width increases. 

Figures 3 and 4 show the critical states for fixed u 
(fixed outer to inner radius ratio). Figure 3 (a = 0.95 
or r,/r, = 39) shows that the presence of an inner cylin- 
der, however small in radius, has significant effects on 
critical states (see also Figs. 5 and 6). For small s (tall 
annulus), introduction of an inner cylinder con- 

4ooll . (al 

3wo . 

?.ooo 

‘lkN 0.3 
FIG. 3. Critical Rayleigh number Ra, as a function of gap 
width s for a = 0.95 (r,/ri = 39). Solid curves correspond to 
asymmetric modes and dotted curves to the axisymmetric 
mode. Curves (a) and (b) for insulating lateral walls ; curves 
(c) and (d) for conducting side walls. The numbers indicate 
the preferred modes (m) and the arrows mark transition 
points. The figure shows that axisymmetric critical states are 

possible only for insulating side walls with 1 .O < s < I .6. 
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FIG. 4. Critical Rayleigh number Rq as a function of gap 
width for a = 0.05 (rO/ri = 1.1). Solid line corresponds to 

insulating side walls and dotted line to conducting walls. 
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FIG. 5. Map of preferred mode as a function of r,,, and s for 
insulating side walls. Each number indicated represents the 
number of radial rolls (0 corresponds to the axisymmetric 
ring roll). Dotted lines are of constant critical Rayleigh num- 

ber. The boundary s = 2r, corresponds to ri = 0. 

0 ; i rm 
FIG. 6. Map of preferred mode as a function of r, and s for 
conducting side walls. Dotted curves are of constant critical 

Rayleigh number. 

siderably raises the critical Rayleigh number Ru, 

which is seen to be strongly dependent on the thermal 
boundary condition on side walls. For large s (fat 
annulus), the effect of an inner cylinder on the critical 
Rayleigh number Ra, diminishes and Ra, approaches 
that of the fluid layer confined in a circular cylinder 
of radius s, although preferred mode configurations 
are quite different. A notable fact is that the intro- 
duction of the inner cylinder has a greater stabilizing 
effect on axisymmetric disturbances than on asym- 
metric ones. Figure 4 (a = 0.05 or r,/ri = 1 .l) illus- 
trates the critical states of the fluid in an annulus 
which approximates a long box or a two-dimensional 
channel. The critical Rayleigh numbers are a little 
lower than those obtained by Catton [4,.5] for rec- 
tangular boxes with conducting or insulating side 
walls. The result shows that the effect of thermal 
boundary conditions on side walls diminishes when s 
is larger than about 2. 

Maps of the preferred mode according to linear 
theory are shown in Figs. 5 (insulating side walls) and 
6 (conducting side walls). The numbers appearing in 
the various zones denote the preferred number of 
radial rolls contained in the annulus. For small s, 
preferred modes are radial rolls with only azimuthal 
and axial velocity components dependent on the three 
spatial variables, which correspond to finite rolls in a 
rectangular box [3]. As s increases, the magnitude of 
the radial velocity component grows appreciably and 
the velocity field of each radial roll becomes fully 
three-dimensional. The critical Rayleigh number is 
mainly determined by the gap width s and little 
affected by the mean radius r,,, ; especially when 
r,,,/s > 1, Ra, is nearly independent of r, (although 
there are cell transitions). 

For insulating side walls, preferred convective 
modes are mainly determined by r,. The number of 
radial rolls is an even integer approximately equal to 
2nr, for moderately small s, which implies that the 
roll possesses a square cross-section at the mean radius 
of the gap. On the other hand, for conducting lateral 
walls, the number of radial rolls rapidly increases as 
r, increases or s decreases when s is small. It is to be 
noted that introduction of the inner cylinder sup- 
presses the occurrence of the axisymmetric mode. For 
conducting side walls, the axisymmetric mode does 
not appear for any combination of gap width and 
mean radius calculated. 
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INSTABILITE DE CONVECTION POUR UNE COUCHE FLUIDE CONFINEE DANS UN 
ESPACE ANNULAIRE VERTICAL CHAUFFE PAR LE BAS 

R&un&L’apparition de la convection naturelle dam une couche fluide completement confin& dans un 
espace annulaire vertical, chauffe par le bas est itudiee sur la base de la theorie lineaire de stabilite. Les 
nombres de Rayleigh critiques et les configurations des cellules preferentielles sont determines en fonction 
du rayon moyen et de la largeur de l’espace pour une profondeur donnbe de la couche. Les resultats sont 

en bon accord avec les observations exp&mentales de Stork et Mtiller. 

KONVEKTIONSINSTABILITAT EINER VON UNTEN BEHEIZTEN 
FLUSSIGKEITSSCHICHT IN EINEM VERTIKALEN RINGKANAL 

Zuaammenfassung-Es wird das Einsetzen der natiirlichen Konvektion in einer von unten beheizten 
Fliissigkeitsschicht, die vollstandig von einem vertikalen Ringkanal begrenzt wird, mit Hilfe der linearen 
Stabilitatstheorie untersucht. Die kritischen Rayleigh- Zahlen und die bevorzugten Zellenstrukturen werden 
in Abhangigkeit des mittleren Radius und der Spaltbreite fiir eine gegebene Schichtdicke bestimmt. Die 
Ergebnisse zeigen gute Ubereinstimmung mit den experimentellen Beobachtungen von Stork und Miiller. 

KOHBEKTHBHAfi HEYCTO@HiBOCTb CJIOII XCHWGCTH B HAI-PEBAEMOM CHH3Y 
BEPTHKAJIbHOM KOJIbHEBOM KAHAJIE 

AeuoTUPPHa OCHOBC JIHH&hSOii TeOpHEi )‘CTOii%iBOCTH HCCJWQ’eTcn B03HiiKIiOBeHHe WTWTBUiHOi? 

KOHBeKWH B HEU’pWZleMOM CHH3)’ CJlOe )IIWlKOCTH B eepTHKanbHOM KOJlbU~BOM KillMJE. KpHTHWCKHe 
3HiWeHHR ‘iHCJIa P3JleX H IlfWUlO’iTHTWbHaK 4OpMa X’IWK Ol’l@XeJl~Hbl B 3aBECHMOCl’H OT C~~WO 

paLQS,‘Ca H BtXH’lHHbl 3a3Op JlJ,S &lHHOii BbICOTbl ‘X0% Pe3,‘JEbTaTbl HCZJIeAOBaHHI XOpO”I0 COr,Ei- 
CyloTCK C 3KC,I~AMeHTKJIbHblMB ~aliRbIMB mTOpKa H Mronnepa. 


